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The interaction of the ionic lattice with the superconducting condensate is treated in terms of the electrostatic
force in superconductors. It is shown that the surface dipole supplies the force responsible for the volume
difference of the normal and superconducting states. Assuming this mechanism, we argue that the usual
parametrization of the theory of deformable superconductors should be revisited.
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I. INTRODUCTION

The theory of deformable superconductors deals either
with effects of the atomic lattice deformations on the super-
conducting condensate or with deformations of the crystal
lattice caused by the inhomogeneous superconducting con-
densate. For example, a lattice deformation around a dislo-
cation pins a vortex.1,2 On the other hand, the forces gener-
ated by supercurrents contribute to the magnetostriction3–5

and the condensate depletion at the vortex core deforms the
atomic lattice so strongly that a significant renormalization
of the vortex mass has been predicted.6–9 In some cases, one
cannot say which of the two effects dominates. This happens,
for instance, if the ionic lattice deformation influences the
structure or orientation of the Abrikosov vortex lattice.10

The free energy describing deformable superconductors
has to include at least three parts. The first part is the elastic
energy of deformations. Its structure and parametrization
have well been established for a long time.11 The second part
is the magnetic energy and the energy of superconducting
condensation. This part can be covered on different levels.
Here, we will refer to the Ginzburg-Landau �GL� theory12

that was employed in the majority of the above mentioned
studies. The third part is a cross term which describes the
mutual effect of deformations and the condensate. In this
paper, we focus on this interaction term.

In the phenomenological approach put forward by Kramer
and Bauer,1 the interaction of the lattice and the condensate
is described by the local product of the atomic lattice density
with the density of superconducting electrons. The strength
of this interaction is conveniently fitted to the volume differ-
ence of the normal and superconducting states.

This local interaction is justified only if the system re-
mains charge neutral.11 Superconductors, however, have a
small charge transfer which results in the so-called Bernoulli
potential.13–15 Moreover, the superconducting gap modifies
the surface dipole.16 The former effect has been already dis-
cussed in Ref. 17, where nonlocal corrections to the theory
of deformable superconductors were derived. To our knowl-
edge, the latter effect has not been considered so far. This
effect of the surface dipole is the major focus of interest in
the present paper.

Before we specify the paper content, let us take a look at
how the problem in question meets the general assumptions
of the theory of deformable superconductors. If the lattice is
modeled by an isotropic deformable medium and the inter-
action is assumed to be local, the interaction energy of
Kramer and Bauer is the only one compatible with the sys-
tem symmetry. Indeed, the condensate density is a scalar
which can interact only with another scalar. The only isotro-
pic scalar quantity linear in the deformation is the trace of
the strain tensor, which is proportional to the ionic density.
Of course, one can construct more elaborate scalars within
nonlinear terms but these are higher-order corrections.

Two modifications are at hand. First, one can take into
account that the real atomic lattice is never isotropic. Even in
simplest lattices of elementary metals, the shear rigidity de-
pends on the orientation of the deformation with respect to
the crystal axes. In the anisotropic crystal, there are two sca-
lar quantities linear in the shear deformation. A correspond-
ing anisotropic generalization of the interaction between the
condensate and the ionic lattice has been discussed by Kogan
et al.10

Second, one can go beyond the local approximation. The
reason for such a step was already mentioned—the interac-
tion in the local approximation is justified only for neutral
systems.11 The superconducting condensate, however, drives
the system out of neutrality inducing the electrostatic poten-
tial known as the Bernoulli potential.18,19 The nonlocal inter-
action mediated by the Bernoulli potential has the form of
the quantum kinetic energy and within the GL theory, it can
be recast into a nonlinear but local interaction.17

Another contribution to the charge transfer induced by the
condensate is the surface dipole.16 While all the above men-
tioned interactions result in a force density acting in the bulk
of the crystal, the surface dipole yields a force that acts as an
external pressure imposed on the surface. As far as we know,
surface contributions to the theory of deformable supercon-
ductors have never been discussed. In this paper, we shall fill
this gap.

The paper is organized as follows. In Sec. II, we show
that the surface dipole determines changes of the crystal vol-
ume during its transition from the normal to the supercon-
ducting state. To this end, we first introduce the basic con-
cept in Sec. II A and derive the coefficient of the local
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interaction from the pressure dependence of the condensation
energy at zero temperature in Sec. II B. The result is com-
pared with the force due to the surface dipole in Sec. II C. In
Sec. III, we introduce the interaction mediated by the Ber-
noulli potential. We first derive a formula for the coefficient
of the local interaction. In Secs. III A and III B, we evaluate
the interaction coefficient for moderately strong and weak
coupling superconductors. In Sec. IV, we discuss differences
and conclude.

II. LOCAL APPROACH

In their pioneering study, Kramer and Bauer1 proposed to
deduce the interaction strength from the pressure dependence
of the critical magnetic field Bc. Since experimental data for
this parametrization are conveniently found in literature, this
approach has been employed by other authors too.

In this section, we provide a derivation of the local inter-
action of Kramer and Bauer within the GL picture of the
superconductor. The presented approach is based on papers
by Šimánek6 and Hake.20

A. Phenomenological force

The volume of a metal changes at the phase transition
from Vn in the normal state to Vs in the superconducting
state.20,21 This change is described by a relative change � of
the volume defined as

Vn − Vs = �Vs. �1�

Since the number of atoms N conserves, we can write the
same relation for the volume per atom v=V /N, i.e., vn−vs
=�vs.

If the volume per atom becomes inhomogeneous, the
crystal has regions requiring different distances of neighbor-
ing atoms. This leads to internal stresses which can be ex-
pressed via an effective force density11

Fph = K � � , �2�

where K is the modulus of hydrostatic compression or simply
the bulk modulus. It is defined as the inverse of the relative
volume change with respect to the pressure

1

K
= −

1

V

�V

�p
. �3�

The temperature dependence of � is similar to the tem-
perature dependence of the superconducting fraction

�

�0
�

���2

��0�2
, �4�

where the subscript zero denotes the zero temperature value.
Šimánek6,7 and Coffey8,9 use the BCS gap �,

�

�0
�

���2

��0�2
, �5�

while other authors prefer the GL function �. We will restrict
our attention to the vicinity of the critical temperature, where

both forms are equivalent since the BCS gap and the GL
function are linearly proportional to each other.22

Relation �4� is the central approximation in the pheno-
menological theory of deformable superconductors. Assum-
ing that in the normal state the system is homogeneous, �0
and �0 are constants. With the GL function normalized to the
density of pairable electrons 2��0�2=n, we obtain

Fph =
2

n
�0K � ���2, �6�

which we will use in our discussion.

B. Difference of normal and superconducting volume

Now, we link the relative change of the volume � to the
pressure dependence of the condensation energy �con. We
follow the derivation of Hake.20

The volume of the sample is the pressure derivative at
fixed temperature of the Gibbs free energy

V = � �G

�p
�

T
. �7�

At zero magnetic field and zero temperature, the free energy
of the normal state Gn is higher than the superconducting
free energy Gs by the condensation energy

Gn − Gs = Vs�con. �8�

Due to the complete expulsion of the magnetic field from
type-I superconductors, the condensation energy is conve-
niently observed via the critical magnetic field at zero tem-
perature, B0,

�con =
B0

2

2�0
. �9�

In his study, Hake expresses all thermodynamical relations
exclusively in terms of the critical magnetic field. Here, we
prefer to use the condensation energy.

From the pressure derivative of relation �8�, it follows that

Vn − Vs = Vs
��con

�p
+ �con

�Vs

�p
. �10�

Comparing the thermodynamical relation �Eq. �10�� with the
definition �Eq. �1��, we obtain the coefficient �0 in terms of
the condensation energy

�0 =
��con

�p
+ �con

1

Vs

�Vs

�p
. �11�

In terms of the bulk modulus �Eq. �3��, we have

�0 =
��con

�p
−

�con

K
. �12�

The force �Eq. �6�� depends on the product �0K; it is thus
advantageous to introduce the inverse bulk modulus also into
the first term of Eq. �12�. For simplicity, we consider hydro-
static pressure and conventional superconductors with isotro-
pic structure. In this case, we can express the pressure de-
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pendence of the density of the condensation energy �con via
its dependence on the electron density,

��con

�p
=

��con

�n

�n

�p
. �13�

Since the number of electrons N does not change, we can
express the bulk compressibility via the change of the den-
sity n=N /V as

1

K
=

1

n

�n

�p
. �14�

Using relation �13� and the bulk modulus �Eq. �14�� in Eq.
�12�, we get

�0K = n
��con

�n
− �con. �15�

The density derivative is taken under the condition of charge
neutrality, i.e., the atomic lattice density changes with the
electron density.

The phenomenological force �Eq. �6�� according to rela-
tion �15� thus reads

Fph = 2� ��con

�n
−

�con

n
� � ���2. �16�

As far as we know, in metals, the derivative is the dominant
part,

��con

�n �
�con

n . Many authors keep only this dominant term
neglecting the other for simplicity.

C. Compression via the surface dipole

Now, we show that the volume change can be described
as a compression of the sample by a force created by the
surface dipole. This relation makes use of the parameter �0
for interactions deep in the bulk questionable.

At the surface of a metal, the electrostatic potential rises
by few volts from its vacuum value to the value deep in the
metal.23 This increase is spread partly outside the region oc-
cupied by ions, typically on the scale of the tunneling length
of electrons in the potential barrier given by the work func-
tion. A part of the barrier is located inside the metal on the
scale of the Thomas-Fermi screening length. Both scales are
of the order of angstroms, making the potential step very
sharp. This sharp step is called the surface dipole.

The surface dipole naturally depends on the temperature.
Moreover, when the metal undergoes a transition to the su-
perconducting state, the temperature dependence of the sur-
face dipole changes. Briefly, the superconducting condensate
affects the surface dipole.16 Let us denote this additional po-
tential near the surface as �T.

The amplitude �T�0�−�T�	� of the additional potential
step follows from the Budd-Vannimenus theorem as16


lat��T�0� − �T�	�� = f − n
�f

�n
, �17�

where f = fs− fn is the free-energy density by which the su-
perconducting state differs from the normal state and 
lat is
the charge density of the ionic lattice. We assume a super-
conductor which fills the half-space x�0.

The additional potential exerts an electrostatic force den-
sity on the ionic lattice,

FT = − 
lat � �T. �18�

The integral of this force density across the surface region
corresponds to an effective pressure on the lattice,

pT = 	
0

	

dxFT
x = 
lat��T�0� − �T�	�� , �19�

which changes the volume of the crystal by

�̃V =
�V

�p
pT. �20�

Clearly, the surface dipole contributes to the relative change
of the volume �̃. From Eq. �20�, we find

�̃ =
1

K

lat��T�0� − �T�	�� . �21�

At zero temperature f =−�con, therefore from Eq. �17�, it
follows that


lat��0�0� − �0�	�� = n
��con

�n
− �con. �22�

The dipole-induced volume change at zero temperature thus
reads

�̃0 =
1

K
�n

��con

�n
− �con� . �23�

Comparing Eq. �23� with Eq. �15�, one can see that the vol-
ume change is fully induced by the surface dipole

�0 = �̃0. �24�

The fact that the volume change is caused by the surface
dipole shows that one should be cautious using the relative
change of the volume �0 as a coefficient of the interaction
between the ionic lattice and the condensate.

Studies of the electrostatic potential in superconductors
have shown that the bulk and surface potentials are of differ-
ent nature and are covered by distinct theories. We note that
these theories are experimentally verified. The surface poten-
tial including the surface dipole has been observed by Morris
and Brown via the Kelvin capacitive pickup.16,19 The internal
charge transfer caused by the bulk electrostatic potential in
the vortex core has been observed via the nuclear magnetic
resonance by Kumagai et al.,24 see also Lipavský et al.25

III. ELECTROSTATIC FORCE ON IONS

According to the Hellmann-Feynman theorem, electrons
act on ions exclusively via the electrostatic force.31 In this
spirit, we expect the force density to be of electrostatic na-
ture,

Fel = − 
lat � � , �25�

where � is the electrostatic potential created by the super-
conducting electrons which is conveniently derived follow-
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ing the approach of Rickayzen.15 Since the system is in equi-
librium, the Gibbs electrochemical potential � for electrons
is constant all over the sample. It is locally defined from the
density of free energy f as

� = e� +
�f

�n
. �26�

Following the customary choice in the theory of supercon-
ductivity, we set the electrochemical potential to zero, �=0;
therefore,

� = −
1

e

�f

�n
. �27�

The theory of the electrostatic potential has been derived
under the assumption that the ion lattice is stiff and its de-
formation is not included. A combination of both effects has
not been studied so far; therefore, it is not yet clear how the
density derivative in Eq. �27� is modified by atomic lattice
deformations. For simplicity, we assume that the density de-
rivatives in Eqs. �27� and �17� are the same. This is the case
if the pairing interaction has a purely electronic nature so
that the atomic lattice density has no effect on the condensa-
tion energy.

Formula �27� is quite general. It has been employed by
Rickayzen to evaluate the Bernoulli potential in supercon-
ductors using the London theory supplemented by the phe-
nomenological temperature dependence of the superconduct-
ing density. In the same paper,15 Rickayzen has used formula
�27� with the BCS free energy and recovered the result of
Adkins and Waldram.14

We use the free-energy density in the GL approximation,

f = a�T − Tc����2 +
1

2
b���4 +

1

2m* ��− i� � − e*A���2

+
1

2�0
�Ba − � 
 A�2, �28�

where A is the vector potential and Ba is the applied mag-
netic field. The reader not familiar with the GL theory is
referred to the textbook26 of Tinkham.

The magnetic free energy �the last term of Eq. �28�� does
not depend on the electron density. For simplicity, we also
assume that the Cooper pair mass m* is independent of this
density. Since the GL wave function � and the vector poten-
tial A are independent variational fields, the density deriva-
tive of the free energy yields the electrostatic potential

� =
a

e

�Tc

�n
���2 −

T − Tc

e

�a

�n
���2 −

1

2e

�b

�n
���4. �29�

The nonlocal corrections discussed in Ref. 17 are hidden
in the second and third terms of Eq. �29�. They can be made
explicit using relations for material parameters a and b, e.g.,
Eq. �33�, and the GL equation, which couples nonlocal and
nonlinear contributions.

Here, we restrict our attention to the close vicinity of the
critical temperature, where all nonlocal and nonlinear contri-
butions can be neglected. Indeed, for T→Tc, the GL wave
function vanishes as ���2�Tc−T. In lowest order in T−Tc,

we can neglect the second and the quartic terms so that re-
lation �29� simplifies to

� =
a

e

�Tc

�n
���2. �30�

Now, we are ready to evaluate the force acting on the
ionic lattice. The electrostatic force density �Eq. �25�� with
the electrostatic potential �Eq. �30�� reads

Fel = −

lat

e
� �a

�Tc

�n
���2� . �31�

To first order in Tc−T, gradients of material parameters a and
�Tc /�n do not contribute, i.e.,

Fel = an
�Tc

�n
� ���2. �32�

We have used 
lat=−en demanded by the local charge neu-
trality.

With nonlocal and nonlinear corrections neglected, the
electrostatic force �Eq. �32�� like the phenomenological force
�Eq. �16�� is proportional to the gradient of the superconduct-
ing density ���2. Our next aim is to compare the electrostatic
coefficient an

�Tc

�n with its phenomenological precursor
2� ��con

�n −
�con

n
�. We will show that the relative values of these

coefficients depend on the strength of the pairing interaction.

A. Superconductors with moderately strong coupling

To be able to compare the electrostatic force density �Eq.
�32�� with the phenomenological force density �Eq. �6��, we
need the GL coefficient a as a function of the electron den-
sity n. For metals such as niobium or lead, it is possible to
use the asymptotic form of the two-fluid free energy of
Gorter and Casimir27 giving28

a = aGC =
�Tc

n
. �33�

Here, � is the linear coefficient of the specific heat.
The critical temperature Tc and the critical magnetic field

B0 at zero temperature are linked via the condensation en-
ergy. The two-fluid model yields29

1

4
�Tc

2 =
B0

2

2�0
. �34�

Within this approximation, the electrostatic force density
�Eq. �32�� reads

Fel
GC = 2� ��con

�n
−

1

4
Tc

2��

�n
� � ���2. �35�

One can see that this is similar but not identical to the phe-
nomenological force density �Eq. �16��. In particular, the
same dominant term ���con /�n results from both ap-
proaches.

We note that Šimánek and other authors use the approxi-
mation �

��con

�n �� �
�con

n �, i.e., they consider only the derivative in
their formulas. Within this accuracy, both formulas are
equivalent.
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B. Superconductors with weak coupling

Metals such as aluminum have weak electron-phonon
coupling and one can use the BCS relations. This approxi-
mation results in a slightly different electrostatic force.

From the BCS theory, Gor’kov has obtained the param-
eters of the GL theory.22 The linear GL coefficient reads

a = aBCS =
6�2kBTc

7��3�EF
, �36�

where EF is the Fermi energy. The Riemann zeta function
has the value ��3�=1.202.

The BCS and the Gorter and Casimir approximations of a
can be related within the free electron model. The electron
density determines the Fermi vector kF= �3�2n�1/3 in terms
of which EF=�2kF

2 /2m. We also use �= �2 /3��2kB
2N0, where

N0= �1 /4�2��2m /�2�kF is the single-spin density of states.
Combining these relations, one finds that both values differ
by a numerical factor

aBCS =
12

7��3�
aGC = 1.43aGC. �37�

The BCS relation connecting the critical temperature with
the condensation energy defined via the magnetic field yields
another numerical factor

0.947
1

4
�Tc

2 =
B0

2

2�0
. �38�

In the two-fluid model, we find Tc
GC=B0


2� /�0. The correc-
tion

Tc
BCS =

Tc
GC


0.947
= 1.028Tc

GC �39�

is by an order of magnitude less important than the factor
1.43 from relation �37�, however.

From Eq. �38�, we obtain Tc in terms of B0, which we use
in the force density �Eq. �32��. With the BCS relation �Eq.
�36��, the electrostatic force density �Eq. �32�� reads

Fel
BCS =

24

7��3�
� 1

0.947

��con

�n
−

1

4
Tc

2��

�n
� � ���2

= 3.012� ��con

�n
− 0.947

1

4
Tc

2��

�n
� � ���2. �40�

One can see that the dominant contribution is increased by
slightly more than 50%, as compared to the phenomenologi-
cal force density �Eq. �16�� and the Gorter-Casimir approxi-
mation �Eq. �35��. Compared to the Gorter-Casimir approxi-
mation, the critical temperature Tc

GC is replaced additionally
by the BCS value Tc

BCS. It will thus be interesting to test the
validity of the phenomenological force on materials of rather
different coupling strengths.

IV. DISCUSSION

We have shown that the change of the total specimen
volume during the superconducting transition can be ex-
pressed as a compression caused by the surface dipole. It is
thus not justified to parametrize the interaction strength of
the condensate deep in the bulk by the coefficient of the
volume change.

To derive the interaction strength, we have used the inter-
nal electrostatic potential for the atomic lattice deformation
in the bulk. The force resulting from the electrostatic poten-
tial in the superconductor is similar but not identical to the
phenomenological force suggested from the volume change.

For moderately coupled materials well described by the
Gorter-Casimir two-fluid model, the phenomenological and
the electrostatic forces have identical dominant terms
���con /�n. They differ in the correction terms only. For
weakly coupled superconductors covered by the BCS theory,
the dominant term is increased by nearly 50%. We have not
discussed the strongly coupled superconductors which do not
obey any of these limits. One can expect that the dominant
term is reduced.

It is a question whether the above derived small differ-
ences in the internal forces can be accessed by some of re-
cent experiments. Among the physical phenomena men-
tioned in the Introduction, the magnetostriction offers the
most sensitive experimental technique. Indeed, one can re-
solve even deformations driven by such small changes in
magnetization as those caused by the de Haas–van Alphen
effect with relative changes of the susceptibility of the order
of 1 in 107.30 A superconductor in the Meissner state is an
ideal diamagnet with large but fixed magnetization. Small
deviations from ideality appear due to the penetration of the
magnetic field into the surface. At the same time, the mag-
netostriction combines the internal forces with the surface
dipole. To separate these two contributions, it will be neces-
sary to analyze how the deformation depends on the sample
geometry.

The two approaches compared in this paper represent two
extreme models. In the electrostatic approach, all forces are
attributed to a mean electric field. In the phenomenological
model, the system is treated as locally neutral which implies
that all forces are attributed to bonds between ions. We ex-
pect that a realistic description requires to combine both ap-
proaches.
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